Antibacterial therapy 1

د. حامد الزعبي
Dr Hamed Al-Zoubi
ILOs

Principles and terms
Different categories of antibiotics
Spectrum of activity and mechanism of action
Resistances
New Antibiotics...? Oh... I got to evolve again!!!
Antibacterial therapy

What is an Antibiotics?

Egyptians 1500BC: Honey for wounds

Alexander Fleming and Louis Pasteur
Antibacterial therapy

2000 B.C. - "Here, eat this root."

1000 B.C. - "That root is heathen, say this prayer."

1850 A.D. - "That prayer is superstition, drink this potion."

1940 A.D. - "That potion is snake oil, swallow this pill."

1985 A.D. - "That pill is ineffective, take this antibiotic."

2000 A.D. - "That antibiotic is useless and artificial. Here, eat this root."

~Author Unknown
The Bright side
Yet even life savers may take life

(remember! Antibiotics are DANGEROUS DRUGS!!)
Antibiotics are DANGEROUS DRUGS
C deathicille (difficile)

A UK Consultant Microbiologists nightmare!
Antibacterial therapy

- **Antibiotics:** natural products derived from soil bacteria and fungi

 Examples:

 Penicillin from penicillin notatum mould

- **Semisynthetic agents:**

 Natural compounds that have been chemically modified to increase its activity and improve pharmacokinetics

 Examples:

 Amoxycillin, Ampicillin, Cephalosporins and Carbapenems, Rifampicin
Antibacterial therapy

Synthetic chemicals:
Trimethoprim and linezolid, quinolones are examples

➢ Antibiotics are loosely applied to all antibacterial agent

Terms related to antibiotics use:
Selective toxicity
Static vs cidal (MIC vs MLC)
Synergism
Broad vs narrow spectrum
Empirical use?
Synergism: Meaning and example
Spectrum of activity
Basic principles:

Selective toxicity:
Kill or inhibit the growth of microorganism without harming human tissue.

Antibiotic susceptibility testing
Bactericidal versus bacteriostatic **FIGURE 1**
Bactericidal: MLC
Bacteriostatic: MIC

Some infections such as infective endocarditis or immunocompromised patients > Bactericidal is a must
MIC

Determination of MIC

Tetracycline (g/ml)
MIC = 2 g/ml

Disk Diffusion Test

Str
Tet
Ery
Chl
Amp
Antibacterial therapy Figure 1

![Graph showing the effect of antibiotics on bacterial growth](image)
Antibacterial therapy

Bacteriostatic allows for natural immunity to deal with the microbe
- Antibodies, Phagocytosis etc

Bactericidial may lead to release of toxins and microbial contents leading to subsequent illness and inflammatory responses.
Antibacterial therapy/

Indications for use / to avoid abuse:

1. Treat infections empirically / culture sensitivity.

2. Prophylaxis/ limited situation.

Abuse:

Side effects
Resistance
Cost-effectiveness
Antibacterial therapy/

Route of administration:

Nature of infection

Bioavailability and therapeutic index or window

Tissue penetration, excretion, pharmacokinetics

Precautions:

> History of hypersensitivity

>Glandular fever (Epstein-Barr virus infection), cytomegalovirus infection greatly increase the risk of developing a penicillin-induced rash

> Impaired liver and kidney functions

> Pregnancy, breastfeeding and children
Antibacterial therapy
Target of antibacterial agents: Figure 2:

Cell wall: Peptidoglycan?

Protein synthesis: Ribosome 70S versus 80S

Folate synthesis:
Bacteria manufacture its own folates while human obtain it in food

Nucleic acid synthesis

Other sites such as bacterial cell membrane
Antibacterial therapy Figure 2: Antibiotics target
Antibacterial therapy/Inhibition of cell wall synthesis

Most bacteria possess a cell wall to protect from osmotic pressures.

Microbe divides – needs to create a new cell wall
- Interrupt this leads to new microbes being susceptible to external influences
- Cell ruptures → Microbe death

Beta lactam agents and glycopeptides
The cell wall of gram-positive and gram-negative bacteria.

Penicillin binding proteins = trans- and carboxypeptidases

of repeating units of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) are responsible for cross-linking these peptide side chains.
Antibacterial therapy/Inhibition of cell wall synthesis

Fig. 5.1 Formation of bacterial cell wall peptidoglycan, showing the sites of action of inhibitors in the process.
Beta lactam agents

Penicillins, cephalosporins, monobactams, carbapenems and beta lactamase inhibitors

Bind penicillin binding proteins preventing cross linking

Beta lactamases are enzymes produced by bacteria that break the antibiotic beta lactam ring > resistance
Site of penicillinase action.
Breakage of the β lactam ring.
Beta lactam agents

Penicillins:

E.g Benzylpenicillin and penicillin G

Narrow spectrum

Short acting

Resistance by beta lactamases

Synthetic penicillins:

Penicillin V

Flucloxacillin and methicillin: Inactivated by S. aureus beta lactamase

However, MRSA developed. MRSA?

Ampicillin and amoxicillin: G+ and G-

Amoxicillin+Clavulinic Acid (B-lactamase inhibitor) compound)/ Broad Spectrum.. Penicillinase-R
Beta lactam agents

Monobactam/ Aztreonam used mostly against serious aerobic and Facultative G-ve infection.

Carbapenem / imipenem & meropenem.. Broad Spectrum G- G+ aerobic anaerobic.., Penicillinase-R.

Cephalosporins:

Broader spectrum

Less hypersensitivity reactions

5 Different generations
Inhibition Cell Wall-3

1st (1960) \textit{Cephalexin, Cephradine}, \underline{spectrum G+}.

2nd (70s) \textit{Cefoxitin, Cefuroxime}, \underline{Broad spectrum}.

3rd (80s) \textit{Ceftriaxone, Cefotaxime}.. \underline{mainly G-ve Enteric bacteria}.

4th (1990s) \textit{Cefepime}.. \underline{mainly G-ve, GPC and pseudomonas}

5th generation 2000s: \textit{ceftaroline} ...MRSA
Glycopeptides

Vancomycin and teicoplanin

Large molecules that are unable to penetrate the outer membrane of Gram-negative bacteria.

The spectrum is consequently restricted to Gram-positive organisms.

Gram-positive cocci with multiple resistance to other drugs such as Enterococci and staphylococci, including MRSA, that exhibit resistance or reduced sensitivity to glycopeptides are being reported more frequently.
Antibacterial therapy/disruption of microbial cell membrane

Essentially, affect cell membrane transportation in and out

Increases permeability of membrane
 - External influences have greater effect
 - Microbe death

Examples: Polymyxin, Colistin

These agents are more toxic systemically than those agents that inhibit cell wall synthesis.
The End