Microcirculation and Edema-
L1 – L2

Faisal I. Mohammed MD, PhD.
Objectives:

- Point out the structure and function of the microcirculation.
- Describe how solutes and fluids are exchanged in capillaries.
- Outline what determines net fluid movement across capillaries.
The Microcirculation

- Important in the transport of nutrients to tissues.
- Site of waste product removal.
- Over 10 billion capillaries with surface area of 500-700 square meters perform function of solute and fluid exchange.

![Microcirculation Diagram]
Capillary system

(a) Details of a capillary network
Capillary system

(a) Sphincters relaxed: blood flowing through capillary bed

(b) Sphincters contracted: blood flowing through thoroughfare channel
Structure of Capillary Wall

- Composed of unicellular layer of endothelial cells surrounded by a basement membrane.
- Diameter of capillaries is 4 to 9 microns.
- Solute and water move across capillary wall via *intercellular cleft* (space between cells) or by *plasmalemma vesicles*.
Capillary types

(a) Continuous capillary formed by endothelial cells

(b) Fenestrated capillary

(c) Sinusoid
Capillary Exchange of Respiratory Gases and Nutrients
Capillary Exchange of Respiratory Gases and Nutrients
Capillary exchange

- Movement of substances between blood and interstitial fluid
- 3 basic methods
 1. Diffusion
 2. Transcytosis
 3. Bulk flow
Diffusion

- Most important method
- Substances move down their concentration gradient
 - O_2 and nutrients from blood to interstitial fluid to body cells
 - CO_2 and wastes move from body cells to interstitial fluid to blood
Diffusion …cont

- Can cross capillary wall through intracellular clefts, fenestrations or through endothelial cells
 - Most plasma proteins cannot cross
 - Except in sinusoids – proteins and even blood cells leave
 - Blood-brain barrier – tight junctions limit diffusion
Transcytosis

- Small quantity of material
 - Substances in blood plasma become enclosed within **pinocytotic vesicles** that enter endothelial cells by **endocytosis** and leave by **exocytosis**
 - Important mainly for **large, lipid-insoluble** molecules that cannot cross capillary walls any other way
Bulk Flow

- Passive process in which large numbers of ions, molecules, or particles in a fluid move together in the same direction
- Based on pressure gradient
- **Diffusion** is more important for solute exchange
- **Bulk flow** more important for regulation of relative volumes of blood and interstitial fluid
- Filtration – from capillaries into interstitial fluid
- Reabsorption – from interstitial fluid into capillaries
NFP = (BHP + IFOP) – (BCOP + IFHP)

✓ Net filtration pressure (NFP) balance of 2 pressures
✓ Two pressures promote filtration

1. Blood hydrostatic pressure (BHP) generated by pumping action of heart
 Falls over capillary bed from 35 to 16 mmHg
2. Interstitial fluid osmotic pressure (IFOP) 1 mmHg
NFP = (BHP + IFOP) – (BCOP + IFHP)

2. Two pressures promote reabsorption
 1. Blood colloid osmotic pressure (BCOP) promotes reabsorption
 ➢ Averages 36 mmHg
 ➢ Due to presence of blood plasma proteins too large to cross walls
 2. Interstitial fluid hydrostatic pressure (IFHP)
 ➢ Close to zero mmHg
Starling’s Law

- Nearly as much reabsorbed as filtered
 - At the arterial end, net outward pressure of 10 mmHg and fluid leaves capillary (filtration)
 - At the venous end, fluid moves in (reabsorption) due to -9 mmHg
- On average, about 85% of fluid filtered in reabsorbed
- Excess enters lymphatic capillaries (about 3L/day) to be eventually returned to blood
Most important means by which substances are transferred between plasma and interstitial fluid is by *diffusion*.

Lipid soluble substances diffuse directly through cell membrane of capillaries (I.E. CO\textsubscript{2}, O\textsubscript{2}).

Lipid insoluble substances such as H\textsubscript{2}O, Na, Cl, glucose cross capillary walls via intercellular clefts.

Concentration differences across capillary enhances diffusion.
Effect of Molecular Size on Passage Through Capillary Pores

- The width of capillary intercellular slit pores is 6 to 7 nanometers.
- The permeability of the capillary pores for different substances varies according to their molecular diameters.
- The capillaries in different tissues have extreme differences in their permeabilities.
Relative Permeability of Muscle Capillary Pores to Different-sized Molecules

<table>
<thead>
<tr>
<th>Substance</th>
<th>Molecular Weight</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>18</td>
<td>1.00</td>
</tr>
<tr>
<td>NaCl</td>
<td>58.5</td>
<td>0.96</td>
</tr>
<tr>
<td>Urea</td>
<td>60</td>
<td>0.8</td>
</tr>
<tr>
<td>Glucose</td>
<td>180</td>
<td>0.6</td>
</tr>
<tr>
<td>Sucrose</td>
<td>342</td>
<td>0.4</td>
</tr>
<tr>
<td>Insulin</td>
<td>5000</td>
<td>0.2</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>17,600</td>
<td>0.03</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>69,000</td>
<td>0.01</td>
</tr>
<tr>
<td>Albumin</td>
<td>69,000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Interstitium and Interstitial Fluid

- Space between cells is called *interstitium*; fluid in this space is called *interstitial fluid*.
- Two major types of solid structures in interstitium are *collagen* fibers and *proteoglycan* filaments (coiled molecules composed of hyaluronic acid).
- Almost all fluid in interstitium is in form of *gel* (fluid proteoglycan mixtures); there is very little free fluid under normal conditions.
Determinants of Net Fluid Movement across Capillaries

- **Capillary hydrostatic pressure** \((P_c)\)-tends to force fluid outward through the capillary membrane.

- **Interstitial fluid pressure** \((P_{if})\)- opposes filtration when value is positive.
Determinants of Net Fluid Movement across Capillaries

- **Plasma colloid osmotic pressure** (π_c) - opposes filtration causing osmosis of water inward through the membrane

- **Interstitial fluid colloid pressure** (π_{if}) promotes filtration by causing osmosis of fluid outward through the membrane

\[
NP = P_c - \pi_c - P_{if} + \pi_{if} = (P_c - P_{if}) - (\pi_c - \pi_{if})
\]
Net Filtration Pressure (NFP)

Key to pressure values:
- HP_c at arterial end = 35 mm Hg
- HP_c at venous end = 17 mm Hg
- $\text{HP}_{if} = 0$ mm Hg
- $\text{OP}_c = 26$ mm Hg
- $\text{OP}_{if} = 1$ mm Hg
Net filtration pressure (NFP) = (BHP + IFOP) - (BCOP + IFHP)

Arterial end

Net filtration

\[NFP = (35 + 1) - (26 + 0) \]
\[= 10 \text{ mm Hg} \]

Venous end

Net reabsorption

\[NFP = (16 + 1) - (26 + 0) \]
\[= -9 \text{ mm Hg} \]

Key:
- BHP = Blood hydrostatic pressure
- IFOP = Interstitial fluid osmotic pressure
- BCOP = Blood colloid osmotic pressure
- IFHP = Interstitial fluid hydrostatic pressure
- NFP = Net filtration pressure

Blood plasma

Lymphatic fluid (lymph) returns to lymphatic capillary

Tissue cells

Excess filtered fluid (3 liters per day)

Interstitial fluid

Net filtration at arterial end of capillaries (20 liters per day)

Net reabsorption at venous end of capillaries (17 liters per day)

Blood flow from arteriole into capillary

Blood flow out of capillary into venule
Starling Forces

- Normal Capillary hydrostatic pressure is approximately 17 mmHg.

- Interstitial fluid pressure in most tissues is negative 3. Encapsulated organs have positive interstitial pressures (+5 to +10 mmHg).

- Negative interstitial fluid pressure is caused by pumping of lymphatic system.

- Colloid osmotic pressure is caused by presence of large proteins.
Plasma Proteins and Colloid Osmotic Pressure

- Plasma colloid osmotic = 28mmHg
- Plasma protein conc. = 7.3gm/dl
- 75% of the total colloid osmotic pressure of plasma results from the presence of *albumin* and 25% is due to *globulins*.

<table>
<thead>
<tr>
<th></th>
<th>gm/dl</th>
<th>(\pi_p) (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>4.5</td>
<td>21.8</td>
</tr>
<tr>
<td>Globulins</td>
<td>2.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>7.3</td>
<td>28.0</td>
</tr>
</tbody>
</table>
Interstitial Colloid Osmotic Pressure

- **Interstitial protein concentration** is approximately 3gm/dl
- The interstitial colloid osmotic pressure is normally 8mmHg
Determinants of Net Fluid Movement Across Capillaries

\[
\text{Filtration Rate} = K_f\{(P_c - P_{if}) - (\pi_c - \pi_{if})\}
\]

- **Filtration rate** = net filtration pressure (NFP) multiplied by the filtration coefficient (Kf)
- **Filtration coefficient (Kf)** is a product of surface area times the hydraulic conductivity of membrane
Forces Causing Filtration at the Arteriole End of the Capillary

Forces tending to move fluid outward:
- Capillary pressure: 30 mmHg
- **Negative** interstitial free fluid pressure: 3 mmHg
- Interstitial fluid colloid osmotic pressure: 8 mmHg

TOTAL OUTWARD FORCE: 41 mmHg

Forces tending to move fluid inward:
- Plasma colloid osmotic pressure: 28 mmHg

TOTAL INWARD FORCE: 28 mmHg

Summation of forces:
- **Outward**: 41 mmHg
- **Inward**: 28 mmHg

NET OUTWARD FORCE: 13 mmHg
Forces Causing Reabsorption at the Venous End of the Capillary

Forces tending to move fluid inward:
- Plasma colloid osmotic pressure: 28 mmHg
- TOTAL INWARD FORCE: 28 mmHg

Forces tending to move fluid outward:
- Capillary pressure: 10 mmHg
- Negative interstitial free fluid pressure: 3 mmHg
- Interstitial fluid colloid osmotic pressure: 8 mmHg
- TOTAL OUTWARD FORCE: 21 mmHg

Summation of forces:
- Outward: 21 mmHg
- Inward: 28 mmHg
- NET INWARD FORCE: 7 mmHg
Figure 7-9 - Schematic representation of the factors responsible for filtration and absorption across the capillary wall and the formation of lymph.
Net Starting Forces in Capillaries

Mean forces tending to move fluid outward:
- Mean Capillary pressure: 17.3 mmHg
- Negative interstitial free fluid pressure: 3.0 mmHg
- Interstitial fluid colloid osmotic pressure: 8.0 mmHg

TOTAL OUTWARD FORCE: 28.3 mmHg

Mean force tending to move fluid inward:
- Plasma colloid osmotic pressure: 28.0 mmHg

TOTAL INWARD FORCE: 28.0 mmHg

Summation of mean forces:
- Outward: 28.3 mmHg
- Inward: 28.0 mmHg

NET OUTWARD FORCE: 0.3 mmHg
Net Starting Forces in Capillaries

✓ **Net filtration pressure** of 0.3 mmHg x K_f which causes a net filtration rate of 2ml/min for entire body.
On the arteriole end, the hydrostatic pressure is higher than the oncotic, so there is fluid movement from plasma to interstitium. The magnitude of this water flow is indicated by the light blue area on the left (downward arrows). On the venule end, the hydrostatic pressure has dropped below the oncotic pressure. Fluid moves back from the interstitium to the plasma. The magnitude of this reverse flow is indicated by the green area on the right (upward arrows).
Causes of edema

1. Increased hydrostatic blood pressure (P_c)
 - heart failure (left or right),
 - excess fluid in the blood

2. Decreased blood colloid osmotic (oncotic) pressure (π_c)
 - Liver, kidney diseases, malnutrition (kwashiorkor), burn injuries

3. Increased interstitial hydrostatic pressure (P_{if})
 (lymphatic capillary blockage)
 - breast cancer surgery, elephantiasis

4. Leaking capillary wall (K_f)
 - histamine release during allergic reaction
Oxygen, carbon dioxide, nutrients, and metabolic wastes **diffuse** between the blood and interstitial fluid along concentration gradients

- Oxygen and nutrients pass from the blood to tissues
- Carbon dioxide and metabolic wastes pass from tissues to the blood
- Water-soluble solutes pass through clefts and fenestrations
- Lipid-soluble molecules diffuse directly through endothelial membranes
Capillary Exchange: Fluid Movements

- Direction of movement depends upon the difference between:
 - Capillary hydrostatic pressure (HP_c)
 - Capillary colloid osmotic pressure (OP_c)
- HP_c – pressure of blood against the capillary walls:
 - Tends to force fluids through the capillary walls
 - Is greater at the arterial end of a bed than at the venule end
- OP_c – created by nondiffusible plasma proteins, which draw water toward themselves
Net Filtration Pressure (NFP)

- NFP – considers all the forces acting on a capillary bed
- \[\text{NFP} = (\text{HP}_c - \text{HP}_{if}) - (\text{OP}_c - \text{OP}_{if}) \]
- At the arterial end of a bed, hydrostatic forces dominate (fluids flow out)
- At the venous end of a bed, osmotic forces dominate (fluids flow in)
- More fluids enter the tissue beds than return to the blood and the excess fluid is returned to the blood via the lymphatic system
Thank You